Controlling *Salmonella* in Feed

Charles W. Starkey, Ph.D.
American Proteins, Inc.

International Rendering Symposium 2013
Atlanta, GA

American Proteins Food Safety Assurance Programs
Thank you

Frank T. Jones, Ph.D.
Performance Poultry Consulting
U. of Arkansas Professor Emeritus
PET FOOD?
Can I get the other two to go in a doggy bag.
Perspective
Perspective
Perspective

RECALL

PORK RECALLED

Salmonella Found in Chicken Feed
Perspective

- 334
 - *Salmonella* infections from baby chicks
- 248
 - *Salmonella* infections from turtles
- 49
 - *Salmonella* infections from pet food

Source: http://www.cdc.gov/salmonella/general/index.html
Perspective

- 2300 known serotypes
- 30 to 40 of clinical pertinence

Source: http://www.cdc.gov/salmonella/general/index.html
Guidance for FDA Staff

Compliance Policy Guide
Sec. 690.800 Salmonella in Animal Feed

Draft Guidance

This guidance document is being distributed for comment purposes only.
FDA Compliance Policy Guide
Salmonella in Animal Feed

- A new compliance policy guide for *Salmonella* in feed, including pet food
- Removes the premise that all *Salmonellae* are bad
FDA Compliance Policy Guide

- CPG categorizes by species and animal

If the serotypes are found in feed, the feed is adulterated!

But, ingredients with any *Salmonella* no longer considered adulterated
FDA Compliance Policy Guide

- Poultry feed with *Salmonella Pullorum*, *Salmonella Gallinarum*, or *Salmonella Enteritidis*;
- Swine feed with *Salmonella Choleraesuis*;
- Sheep feed with *Salmonella Abortusovis*;
- Horse feed with *Salmonella Abortusequi*;
- Dairy and beef feed(s) with *Salmonella Newport* or *Salmonella Dublin*.
Says all *salmonellae* in milk replacers and pet food are adulterants

- Young animals, human contact
- Further heat treatment of ingredients

CPG is functioning as regulation now.
Salmonella Basics

- European feed experts state that Salmonella is:
 - “...the major hazard for microbial contamination of animal feed.”
- Salmonella highly adaptable to environmental conditions.
- Salmonella native habitat is the intestinal tract, but widely distributed in nature (ubiquitous).
- One researcher observed: “Given its ubiquity, it is unlikely that Salmonella will be eradicated from the food chain.” (Humphrey, 2004).
Salmonella Basics

- *Salmonella* survives stress (particularly dehydration) better than most of its family (*Enterobactiaceae*).
- Dust is thought to be a sensitive indicator for the presence of *Salmonella* in feed and poultry houses.
- *Salmonella* is capable of surviving for extended periods in a variety of environments on numerous materials.
Estimated *Salmonella* Survival Times

<table>
<thead>
<tr>
<th>Contaminated Material</th>
<th>Est. Survival (Days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cloth</td>
<td>228</td>
</tr>
<tr>
<td>Dried cattle feces</td>
<td>1000+</td>
</tr>
<tr>
<td>Dried rosemary</td>
<td>203</td>
</tr>
<tr>
<td>Dried whole egg</td>
<td>4+</td>
</tr>
<tr>
<td>Earth and pasture</td>
<td>200</td>
</tr>
<tr>
<td>Edible nuts</td>
<td>>365</td>
</tr>
<tr>
<td>Egg shells</td>
<td>350</td>
</tr>
<tr>
<td>Fresh Parsley</td>
<td>161</td>
</tr>
<tr>
<td>Frozen Shrimp</td>
<td>150</td>
</tr>
<tr>
<td>Lettuce</td>
<td>63</td>
</tr>
<tr>
<td>Poultry Feed</td>
<td>98+</td>
</tr>
<tr>
<td>Roach pellets</td>
<td>199</td>
</tr>
<tr>
<td>Rodent feces</td>
<td>148</td>
</tr>
<tr>
<td>Spray Dried Milk</td>
<td>>120</td>
</tr>
<tr>
<td>Sweeper dust</td>
<td>300</td>
</tr>
<tr>
<td>Tomatoes</td>
<td>49</td>
</tr>
<tr>
<td>Wash and wear fabric</td>
<td>70+</td>
</tr>
</tbody>
</table>
Number of *Salmonella* in Naturally Contaminated Feeds¹

<table>
<thead>
<tr>
<th>Feed or Ingredient</th>
<th>Salmonella / 100g</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Range</td>
</tr>
<tr>
<td>Meat & Bone Meals</td>
<td>1.65</td>
<td>0.5-7.0</td>
</tr>
<tr>
<td>Poultry Meals</td>
<td>1.22</td>
<td>1.0-2.0</td>
</tr>
<tr>
<td>Swine Feeds</td>
<td>1.5</td>
<td>0.5-3.5</td>
</tr>
<tr>
<td>Poultry Feeds</td>
<td>9.61</td>
<td>>1-50</td>
</tr>
<tr>
<td>Fish Meals</td>
<td>9.1</td>
<td><3-21</td>
</tr>
<tr>
<td>Hog Supplements</td>
<td><3</td>
<td><3-23</td>
</tr>
<tr>
<td>Meat & Bone Meals</td>
<td>3.6</td>
<td><3-460</td>
</tr>
<tr>
<td>Meat Meals</td>
<td>9.1</td>
<td><3-1,100</td>
</tr>
<tr>
<td>Animal Feeds</td>
<td>9.1</td>
<td><3-1,100</td>
</tr>
<tr>
<td>Cottonseed Meals</td>
<td>207</td>
<td>100-400</td>
</tr>
<tr>
<td>Animal Protein Meals</td>
<td>16.3</td>
<td>0.03-1,100</td>
</tr>
</tbody>
</table>

¹May be underestimated.
Sampling for *Salmonella* in Feed Mill Facilities

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Mill Personnel Collected</th>
<th>Researcher Collected</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. Run</td>
<td>No. Pos</td>
</tr>
<tr>
<td>Feed</td>
<td>42</td>
<td>11</td>
</tr>
<tr>
<td>Meat Meal</td>
<td>14</td>
<td>12</td>
</tr>
<tr>
<td>Fish Meal</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>Corn</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>Liquid Fat</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>All Samples</td>
<td>80</td>
<td>35</td>
</tr>
</tbody>
</table>

1^Adapted from Jones, 2008
Sampling Feed and Ingredients for *Salmonella*

- 1 MT w/ 100 *Salm*. If evenly distributed – ONE 25g sample - odds of 1/400
- Uneven distribution = uncertainty
- Variety of products & dynamic process
- *Salmonella* could be nearly anywhere
- Positives are a BIG deal
- Are positives from samples?
- Aseptic Sampling
 - A – “without” or “not”
 - Septic - “infection” or “putrefaction”
Where do *Salmonella* come from?

- **External Sources**
 - **Raw Materials** - Raw Ingredient = contaminated
 - **Personnel** - infected feces 10^5 - 10^9 – shed ~ 5 wks
 - **Leaks or openings**
 - **Equipment / Transport Vehicles**
 - **Vermin**
 - Mice Inf. by 15 cfu; Conc. contam. 3-4X; droppings ~ 10^5
 - Wild birds – carry contam. – Congregation points
 - Insects – spread contam.

- **Prevent Contamination**
Preventing *Salmonella* Contamination

- **Raw Materials Purchasing Practices**
 - **Formal Supplier Approval Process** should address:
 - Raw Materials Procurement
 - Manufacturing Procedures
 - Documentation of Process Control
 - Transportation Expectations
 - Facilities Inspections
 - Criteria for Rejecting Loads
 - Procedures for Dealing with Positive Results
 - Criteria for Termination of the Relationship
Preventing *Salmonella* Contamination

- Arrival Inspections
 - Verification of Ingredient Identity
 - Inspection of Documentation
 - Transportation Vehicle Inspection
 - Visual Product Inspection
 - Reject Deficient Loads
 - Sample Accepted Loads
- Sample Aseptically
Preventing *Salmonella* Contamination

- **Ingredient Receiving** – Usually the most contaminated area of the plant
- **Ingredient Unloading** – LOTS of contaminated dust
- **WHERE DOES THE DUST GO?**
Relationship of Dust Accumulation to *Salmonella* Contamination

Abstracted from Nape, 1968

1Abstracted from Nape, 1968
Where do *Salmonella* come from?

- **Internal Sources**
 - “Segregation of raw material areas... is important...but microbial growth niches in the finished product environment are responsible for the bulk of high incidence rates.” Gabis (1991)
 - *Salmonella* may find niches in the processing area and survive for long periods
 - Cracks or crevices
 - Under equipment
 - In equipment
 - Hollow places
 - Defective packaging
Where do *Salmonella* come from?

- **Internal Sources Compounding Factors**
 - Moisture accumulation
 - Condensation in coolers / driers
 - Inadequate dry time after wet cleaning
 - Storage bins
 - Particle size reduction
 - Temperature changes
 - Fat
 - Protects
 - Adhesive
 - Biofilms
Where do *Salmonella* come from?

- “If the *salmonellae* are not provided with a suitable environment in which to grow, the risk of finished product contamination is greatly reduced because the original populations do not proliferate.” Gabis (1991)
- **Reduce Multiplication**
- **How?**
Residues In Mill Consistently Contaminate Feed

Address Obvious Sources of Potential Contamination

How long can contamination persist?
An Example from Dry Cereal Manufacturing

1998, \textit{S. agona}
209 Cases
47 Hospitalized

- Same Company
- Same Plant
- Isolates with same genetic fingerprint

How long does Salmonella persist? – At least 10 years!

2008, \textit{S. agona}
28 Cases
- Establish important parameters at EACH step
 - Temperature
 - Time
 - pH
 - Moisture
 - Indicator organisms
 - *E. coli*, *Enterobacteriaceae*
 - Contamination level
 - Contamination potential
- Establishes a baseline and an evaluation tool
- Evaluate temperature differences to find trouble spots
Cleaning Versus Sanitation

- Cleaning is physically removing food or soil (and associated microbes) from a surface or area often by muscle power and with the aid of tools.

- Sanitizing is destroying microbes by chemical or physical means.

- **BOTH** cleaning and sanitation are indispensable.
Salmonella Control

• Kill

• Reduce multiplication

• Prevent contamination
Processes that Kill *Salmonella*

- Irradiation
- Thermal Processing
- Chemicals
What Temperature kills *Salmonella*?

- Depends on (among other things):
 1. Application time
 2. *Salmonella* serotype or strain
 3. Number of *Salmonella* present
 4. State of *Salmonella* prior to treatment
 5. Product available moisture (Aw); Aw↓ Heat Res↑
 6. Formulation (particularly fat content)
 7. Product pH
 8. Presence of antimicrobial compounds
 9. Moisture during treatment
 10. System pressure
 11. Holding conditions following treatment
Moisture and *Salmonella* Reduction in Conditioning or Preconditioning

% Reduction in Salm.

![Bar chart showing % Reduction in Salm.](image)

Added Moisture

- 7: 50.29
- 10: 79.41

Target ≥15%

1 Adapted from Israelsen et al. 1994
Chemical Treatment for Contamination

- Safe use for years in other products
- Effectiveness
 - Number of Salmonella present
 - Type of product
 - Concentration used
 - Contact Time
 - Dispersion
- May be primary or secondary treatment
- Effective treatments offer residual activity
- Basic Types –
 - Organic Acids (Acetic, Formic, Lactic, Propionic)
 - Formaldehyde
Organic Acids

Advantages
- History of safe use
- Most on GRAS list
- Widely used in human foods

Disadvantages
- High conc. to kill
- Feed palatability?
- Pure acids corrosive
- Incr. nutrient density?
- Increased virulence?
Level and time required for organic acids to reduce *Enterobacteriaceae* in feed

<table>
<thead>
<tr>
<th>ORGANIC ACID REDUCTION</th>
<th>DAYS REQUIRED FOR 90% (KG/TON)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FORMIC</td>
<td>5 8 10 12</td>
</tr>
<tr>
<td>ACETIC</td>
<td>12 4 1.5 0.8</td>
</tr>
<tr>
<td>PROPIONIC</td>
<td>>35 >35 16 12</td>
</tr>
<tr>
<td>LACTIC</td>
<td>>35 >35 14 8</td>
</tr>
</tbody>
</table>

1VANDERWAL, 1979
Level and time required for commercial products to eliminate *salmonella* from fish meal

<table>
<thead>
<tr>
<th>Product / Concentration</th>
<th>Time Required (Days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buffered Propionic Acid – 6 kg/ton</td>
<td>5-7</td>
</tr>
<tr>
<td>Propionic Acid Mixture – 10 kg/ton</td>
<td>5-7</td>
</tr>
<tr>
<td>Propionic-Formic Acid Mixture – 10 kg/ton</td>
<td>1-2</td>
</tr>
<tr>
<td>Formaldehyde-Propionic Acid Mixture – 2 kg/ton</td>
<td>1-2</td>
</tr>
</tbody>
</table>

Zaldivar 1990; Kaiser 1992
Summary

- *Salmonella* is a survivor in/on many materials
- Sampling for *Salmonella*
 - Uncertainty
 - septic procedures necessary
- Control requires
 - Preventing Contamination
 - Reducing Multiplication
 - Establish a baseline of conditions as a guide
- Killing *Salmonella*
 - Pelleting is effective but recontamination issues
 - Chemicals reduce recontamination but present other issues
Sources

- http://www.cdc.gov/salmonella/

- **Essential Rendering**
 - ISBN 0-9654660-3-5

- **The Original Recyclers**
 - ISBN 0-9654660-0-0

- **Sanitation and Hygiene in the Production of Rendered animal Products**
 - ISBN 0-9654660-1-9

- **HACCP A Systematic Approach to Food Safety**
Thank You

Questions

Charles Starkey
charles.starkey@amprot.com
717-250-5178