6-1 Operations on Functions

Find \(f + g \)(x), \(f - g \)(x), \(f \cdot g \)(x), and \(\frac{f}{g} \)(x) for each \(f \)(x) and \(g \)(x). Indicate any restrictions in domain or range.

1. \(f(x) = x + 2 \)
\(g(x) = 3x - 1 \)

ANSWER:
\[(f + g)(x) = 4x + 1 \]
\[(f - g)(x) = -2x + 3 \]
\[(f \cdot g)(x) = 3x^2 + 5x - 2 \]
\[\left(\frac{f}{g} \right)(x) = \frac{x + 2}{3x - 1}, \ x \neq \frac{1}{3} \]

For each pair of functions, find \(f \circ g \) and \(g \circ f \), if they exist. State the domain and range for each composed function.

3. \(f = \{(2, 5), (6, 10), (12, 9), (7, 6)\} \)
\(g = \{(9, 11), (6, 15), (10, 13), (5, 8)\} \)

ANSWER:
\(f \circ g \) is undefined;
\(g \circ f = \{(2, 8), (6, 13), (12, 11), (7, 15)\} \)

Find \([f \circ g](x) \) and \([g \circ f](x) \), if they exist. State the domain and range for each composed function.

5. \(f(x) = -3x \)
\(g(x) = 5x - 6 \)

ANSWER:
\[[f \circ g](x) = -15x + 18 \]
\[[g \circ f](x) = -15x - 6 \]

7. **CCSS MODELING** Dora has 8% of her earnings deducted from her paycheck for a college savings plan. She can choose to take the deduction either before taxes are withheld, which reduces her taxable income, or after taxes are withheld. Dora’s tax rate is 17.5%. If her pay before taxes and deductions is $950, will she save more money if the deductions are taken before or after taxes are withheld? Explain.

ANSWER:
Either way, she will have $228.95 taken from her paycheck. If she takes the college savings plan deduction before taxes, $76 will go to her college plan and $152.95 will go to taxes. If she takes the college savings plan deduction after taxes, only $62.70 will go to her college plan and $166.25 will go to taxes.
6-1 Operations on Functions

11. \(f(x) = 3x \)
 \(g(x) = -2x + 6 \)

ANSWER:
\((f + g)(x) = x + 6 \)
\((f - g)(x) = 5x - 6 \)
\((f \cdot g)(x) = -6x^2 + 18x \)
\(\left(\frac{f}{g} \right)(x) = \frac{3x}{-2x + 6}, x \neq 3 \)

13. \(f(x) = x^2 \)
 \(g(x) = x - 5 \)

ANSWER:
\((f + g)(x) = x^2 + x - 5 \)
\((f - g)(x) = x^2 - x + 5 \)
\((f \cdot g)(x) = x^3 - 5x^2 \)
\(\left(\frac{f}{g} \right)(x) = \frac{x^2}{x - 5}, x \neq 5 \)

15. \(f(x) = 3x^2 - 4 \)
 \(g(x) = x^2 - 8x + 4 \)

ANSWER:
\((f + g)(x) = 4x^2 - 8x \)
\((f - g)(x) = 2x^2 + 8x - 8 \)
\((f \cdot g)(x) = 3x^4 - 24x^3 + 32x^2 - 16 \)
\(\left(\frac{f}{g} \right)(x) = \frac{3x^2 - 4}{x^2 - 8x + 4}, x \neq 4 \pm 2\sqrt{3} \)

For each pair of functions, find \(f \circ g \) and \(g \circ f \). If they exist. State the domain and range for each composed function.

17. \(f = \{(-8, -4), (0, 4), (2, 6), (-6, -2)\} \)
 \(g = \{(4, -4), (-2, -1), (-4, 0), (6, -5)\} \)

ANSWER:
\(f \circ g = \{(-8, -4), (0, 4), (2, 6), (-6, -2)\} \)
\(g \circ f = \{(-8, -4), (-2, -1), (-4, 0), (6, -5)\} \)

19. \(f = \{(5, 13), (-4, -2), (-8, -11), (3, 1)\} \)
 \(g = \{(-8, 2), (-4, 1), (3, -3), (5, 7)\} \)

ANSWER:
\(f \circ g \) is undefined; \(g \circ f \) is undefined.

21. \(f = \{(-15, -5), (-4, 12), (1, 7), (3, 9)\} \)
 \(g = \{3, -9), (7, 2), (8, -6), (12, 0)\} \)

ANSWER:
\(f \circ g \) is undefined; \(g \circ f = \{(-4, 0), (1, 2)\} \).

23. \(f = \{7, -3\}, (-10, -3), (-7, -8), (-3, 6)\) \)
 \(g = \{4, -3), (3, -7), (9, 8), (-4, -4)\) \)

ANSWER:
\(f \circ g = \{(4, 6), (-3, 8)\} \); \(g \circ f \) is undefined.

25. \(f = \{(-4, -1), (-2, 6), (-1, 10), (4, 11)\} \)
 \(g = \{-1, 5), (3, -4), (6, 4), (10, 8)\} \)

ANSWER:
\(f \circ g = \{(3, -1), (6, 11)\} \)
\(g \circ f = \{(-4, 5), (-2, 4), (-1, 8)\} \)
6-1 Operations on Functions

Find \(f \circ g \) and \(g \circ f \) if they exist. State the domain and range for each composed function.

27. \(f(x) = 2x \)
 \(g(x) = x + 5 \)

 ANSWER:
 \[(f \circ g)(x) = 2x + 10; \]
 \[(g \circ f)(x) = 2x + 5 \]
 \(D = \{ \text{all real numbers} \}, \ R = \{ \text{all even numbers} \} \)
 \(D = \{ \text{all real numbers} \}, \ R = \{ \text{all odd numbers} \} \)

29. \(f(x) = x + 5 \)
 \(g(x) = 3x - 7 \)

 ANSWER:
 \[(f \circ g)(x) = 3x - 2; \]
 \[(g \circ f)(x) = 3x + 8 \]
 \(D = \{ \text{all real numbers} \}, \ R = \{ \text{all real numbers} \} \)
 \(D = \{ \text{all real numbers} \}, \ R = \{ \text{all real numbers} \} \)

31. \(f(x) = x^2 + 6x - 2 \)
 \(g(x) = x - 6 \)

 ANSWER:
 \[(f \circ g)(x) = x^2 - 6x - 2; \]
 \[(g \circ f)(x) = x^2 + 6x - 8 \]
 \(D = \{ \text{all real numbers} \}, \ R = \{ y \mid y \geq -11 \} \)
 \(D = \{ \text{all real numbers} \}, \ R = \{ y \mid y \geq -17 \} \)

33. \(f(x) = 4x - 1 \)
 \(g(x) = x^3 + 2 \)

 ANSWER:
 \[(f \circ g)(x) = 4x^2 + 7; \]
 \[(g \circ f)(x) = 4x^3 - 48x^2 + 12x + 1 \]
 \(D = \{ \text{all real numbers} \}, \ R = \{ \text{all real numbers} \} \)
 \(D = \{ \text{all real numbers} \}, \ R = \{ \text{all real numbers} \} \)
37. **CCSS SENSE-MAKING** Ms. Smith wants to buy an HDTV, which is on sale for 35% off the original price of $2299. The sales tax is 6.25%.

 a. Write two functions representing the price after the discount, \(p(x) \), and the price after sales tax, \(t(x) \).

 \[
p(x) = 0.65x; \quad t(x) = 1.0625x
 \]

 ANSWER:

 b. Which composition of functions represents the price of the HDTV, \([p \circ t](x) \) or \([t \circ p](x) \)? Explain your reasoning.

 ANSWER:

 c. How much will Ms. Smith pay for the HDTV?

 ANSWER:

43. \(h[f(−5)] \)

44. \(f[h(−3)] \)

45. \(f[g(3a)] \)

46. \(g[f(a^2−a)] \)

Perform each operation if \(f(x) = x^2 + x - 12 \) and \(g(x) = x - 3 \). State the domain of the resulting function.

ANSWER:

39. \(2(\cdot f)(x) \)

ANSWER:

\[
2(\cdot f)(x) = 2x^3 - 4x^2 - 30x + 72; \quad D = \{ \text{all real numbers} \}
\]

If \(f(x) = 5x \), \(g(x) = -2x + 1 \), and \(h(x) = x^2 + 6x + 8 \), find each value.

41. \(f[g(−2)] \)

ANSWER:

25
6-1 Operations on Functions

51. **EMPLOYMENT** The number of women and men age 16 and over employed each year in the United States can be modeled by the following equations, where \(x \) is the number of years since 1994 and \(y \) is the number of people in thousands.

- women: \(y = 1086.4x + 56,610 \)
- men: \(y = 999.2x + 66,450 \)

a. Write a function that models the total number of men and women employed in the United States during this time.

b. If \(f \) is the function for the number of men, and \(g \) is the function for the number of women, what does \((f - g)(x)\) represent?

ANSWER:

a. \(y = 2085.6x + 123,060 \)

b. The function represents the difference in the number of men and women employed in the U.S.

If \(f(x) = x + 2 \), \(g(x) = -4x + 3 \), and \(h(x) = x^2 - 2x + 1 \), find each value.

53. \([(f + g) \cdot h](1)\)

ANSWER:

0

55. \([f \circ (g \circ h)](2)\)

ANSWER:

1

57. \([h \circ (f \circ g)](5)\)

ANSWER:

256

59. **OPEN ENDED** Write two functions \(f(x) \) and \(g(x) \) such that \((f \circ g)(4) = 0\).

ANSWER:

Sample answer: \(f(x) = x - 9 \), \(g(x) = x + 5 \)

61. **CHALLENGE** Given \(f(x) = \sqrt{x^3} \) and \(g(x) = \sqrt{x^6} \), determine the domain for each of the following.

a. \(g(x) \cdot g(x) \)

b. \(f(x) \cdot f(x) \)

ANSWER:

a. \(D = \{ \text{all real numbers} \} \)

b. \(D = \{ x \mid x \geq 0 \} \)

63. **WRITING IN MATH** In the real world, why would you ever perform a composition of functions?

ANSWER:

Sample answer: Many situations in the real world involve complex calculations in which multiple functions are used. In order to solve some problems, a composition of those functions may need to be used. For example, the product of a manufacturing plant may have to go through several processes in a particular order, in which each process is described by a function. By finding the composition, only one calculation must be made to find the solution to the problem.
6-1 Operations on Functions

65. If \(g(x) = x^2 + 9x + 21 \) and \(h(x) = 2(x + 5)^2 \), which is an equivalent form of \(h(x) - g(x) \)?

\[F \ k(x) = -x^2 - 11x - 29 \]
\[G \ k(x) = x^2 + 11x + 29 \]
\[H \ k(x) = x + 4 \]
\[J \ k(x) = x^2 + 7x + 11 \]

ANSWER:

G

67. SAT/ACT What is the value of \(f \left(g(6) \right) \) if \(f(x) = 2x + 4 \) and \(g(x) = x^2 + 5 \)?

\[A \ 38 \]
\[B \ 43 \]
\[C \ 57 \]
\[D \ 86 \]
\[E \ 261 \]

ANSWER:

D

Find all rational zeros of each function.

69. \(f(x) = x^3 - 3x^2 - 10x + 24 \)

ANSWER:

\(-3, 2, 4\)

71. \(f(x) = 2x^3 - 5x^2 - 28x + 15 \)

ANSWER:

\(-3, 5, \frac{1}{2}\)

State the possible number of positive real zeros, negative real zeros, and imaginary zeros of each function.

73. \(f(x) = -4x^4 - x^2 - x + 1 \)

ANSWER:

1; 1; 2

75. \(f(x) = 2x^4 - 3x^3 - 2x^2 + 3 \)

ANSWER:

2 or 0; 2 or 0; 4, 2, or 0

Solve each system of equations.

77. \(3x + 2y + 3z = 16 \)
\(2x - y + z = 3 \)

ANSWER:

\((1, 2, 3)\)

79. \(2x + 4y - z = -3 \)
\(y + z = 4 \)
\(3y = -3 \)

ANSWER:

\((3, -1, 5)\)
6-1 Operations on Functions

Solve each equation or formula for the specified variable.

81. \(5x - 7y = 12\), for \(x\)

\[\text{ANSWER:} \quad x = \frac{12 + 7y}{5}\]

83. \(4x + 8yz = 15\), for \(x\)

\[\text{ANSWER:} \quad x = \frac{15 - 8yz}{4}\]

85. \(A = k^2 + b\), for \(k\)

\[\text{ANSWER:} \quad k = \pm \sqrt{A - b}\]