SOFTWARE ENGINEERING CAPSTONE COURSE

• Course Description
 • Required two-semester course
 • Semester 1: Requirements engineering (must pass with C or better)
 • Semester 2: Design and implementation
 • Team based; complex project defined by an actual customer
 • Learn-Practice-Apply-Improve cycle

• Audience: Seniors
CURRICULUM DEVELOPMENT

• Learning outcomes
 • Documented and included in syllabus
 • Knowledge and comprehension
 • Application and analysis
 • Synthesis and evaluation
 • Every other year: attainment of student outcomes and learning outcome examined; recommendations are made to instructors and curriculum committee
 • Every 4 years: major review

• Course Repository
 • Resources
 • Templates for documents using IEEE standards
BALANCE OF RESEARCH AND TEACHING

- High-Assurance Transformation System (HATS) GUI
 - Client: Sandia National Laboratories
- Scene and Countermeasures Integration for Munition Interaction with Targets (SCIMITAR)
 - Client: ARL
- Saturn Rings project
 - Client: NASA
- Gravity Data Repository and Processing System (GDRP)
 - Client: U.S. Geological Survey; Pan American Center for Earth and Environmental Studies (PACES)
- Sensor Data Property Specification tool
 - Client: Environmental scientist with Cyber-ShARE Center
PROFESSIONAL DEVELOPMENT CONNECTED WITH TEACHING

- Certification
 - Secondary education
 - IEEE-CS CSDP
- Cooperative learning methodologies for team building
 - Teaching professional and team skills
 - Individual accountability
 - Student-professor reflections
- Communities of practice (Lave & Wenger, 1991)
 - Learners develop the skills, knowledge, and expertise of the group through supported immersion
- Attendance, publication and presentation at education conferences
TEACHING TIPS

- Engage the students
- Help students ask good questions
- Challenge their knowledge
- Provide timely, constructive critique
- Scope your expectations

It’s better for students to learn essential concepts deeply rather than many concepts superficially